On the Energy Consumption Forecasting of Data Centers Based on Weather Conditions: Remote Sensing and Machine Learning Approach
نویسندگان
چکیده
The energy consumption of Data Centers (DCs) is a very important figure for the telecommunications operators, not only in terms of cost, but also in terms of operational reliability. A relation between the energy consumption and the weather conditions would indicate that weather forecast models could be used for predicting energy consumption of DCs. A reliable forecast would result in a more efficient management of the available energy and would make it easier to take advantage of the modern types of power-grid based on renewable energy resources. In this ,paper, we exploit the capabilities provided by the FIESTA-IoT platform in order to investigate the correlation between the weather conditions and the energy consumption in DCs. Then, by using multi-variable linear regression process, we model this correlation between the energy consumption and the dominant weather conditions parameters in order to effectively forecast the energy consumption based on the weather forecast. We have validated our results through live measurements from the RealDC testbed. Results from our proposed approach indicate that forecasting of energy consumption based on weather conditions could help not only DC operators in managing their cooling systems and power usage, but also electricity companies in optimizing their power distribution systems.
منابع مشابه
Evaluation of remote sensing indicators in drought monitoring using machine learning algorithms (Case study: Marivan city)
Remote sensing indices are used to analyze the Spatio-temporal distribution of drought conditions and to identify the severity of drought. This study, using various drought indices generated from Madis and TRMM satellite data extracted from Google Earth Engine (GEE) platform. Drought conditions in Marivan city from February to November for the years 2001 to 2017 were analyzed based on spatial a...
متن کاملAn Intelligent Machine Learning-Based Protection of AC Microgrids Using Dynamic Mode Decomposition
An intelligent strategy for the protection of AC microgrids is presented in this paper. This method was halving to an initial signal processing step and a machine learning-based forecasting step. The initial stage investigates currents and voltages with a window-based approach based on the dynamic decomposition method (DDM) and then involves the norms of the signals to the resultant DDM data. T...
متن کاملIntegration of remote sensing and meteorological data to predict flooding time using deep learning algorithm
Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...
متن کاملA new approach to wind turbine power generation forecasting, using weather radar data based on Hidden Markov Model
The wind is one of the most important and affecting phenomena and is known as one of the significant clean resources of energy. Apart from other atmospheric parameters, the wind has complex behavior and intermittent characteristics. Local phenomena can be accompanied by the wind, which is strong, non-predicted, and damaging. Weather radars are capable of detecting and displaying storm-related ...
متن کاملSpatio-temporal analysis of diurnal air temperature parameterization in Weather Stations over Iran
Diurnal air temperature modeling is a beneficial experimental and mathematical approach which can be used in many fields related to Geosciences. The modeling and spatio-temporal analysis of air Diurnal Temperature Cycle (DTC) was conducted using data obtained from 105 synoptic stations in Iran during the years 2013-2014 for the first time; the key variable for controlling the cosine term i...
متن کامل